Hybrid Evolutionary Multi-Objective Optimization Algorithms

نویسندگان

  • Hisao Ishibuchi
  • Tadashi Yoshida
چکیده

This paper examines how the search ability of evolutionary multi-objective optimization (EMO) algorithms can be improved by the hybridization with local search through computational experiments on multi-objective permutation flowshop scheduling problems. The task of EMO algorithms is to find a variety of nondominated solutions of multi-objective optimization problems. First we describe our multi-objective genetic local search (MOGLS) algorithm, which is the hybridization of a simple EMO algorithm with local search. Next we discuss some implementation issues of local search in our MOGLS algorithm such as the choice of initial (i.e., starting) solutions for local search and a termination condition of local search. Then we implement hybrid EMO algorithms using well-known EMO algorithms: SPEA and NSGA-II. Finally we compare those EMO algorithms with their hybrid versions through computational experiments. Experimental results show that the hybridization with local search can improve the search ability of the EMO algorithms when local search is appropriately implemented in their hybrid versions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid MOEA/D-TS for Solving Multi-Objective Problems

In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...

متن کامل

Solving ‎‎‎Multi-objective Optimal Control Problems of chemical ‎processes ‎using ‎Hybrid ‎Evolutionary ‎Algorithm

Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier‎. ‎This paper applies an evolutionary optimization scheme‎, ‎inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...

متن کامل

Pareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm

Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...

متن کامل

Approximate Pareto Optimal Solutions of Multi objective Optimal Control Problems by Evolutionary Algorithms

In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced‎. ‎In this approach‎, ‎first a discretized form of the time-control space is considered and then‎, ‎a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using ...

متن کامل

Multi-Objective Hybrid Evolutionary Optimization with Automatic Switching Among Constituent Algorithms

In this work, a multi-objective hybrid optimizer is presented. The optimizer uses several multi-objective evolutionary optimization algorithms and orchestrates the application of these algorithms to multi-objective optimization problems, using an automatic internal switching algorithm. The switching algorithm is designed to favor those search algorithms that quickly improve the Pareto approxima...

متن کامل

Multi-objective Optimization of a Solar Driven Combined Power and Refrigeration System Using Two Evolutionary Algorithms Based on Exergoeconomic Concept

This paper deals with a multi-objective optimization of a novel micro solar driven combined power and ejector refrigeration system (CPER). The system combines an organic Rankine cycle (ORC) with an ejector refrigeration cycle to generate electricity and cold capacity simultaneously. Major thermodynamic parameters, namely turbine inlet temperature, turbine inlet pressure, turbine back pressure, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002